Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 36(7): 2227-37, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26888932

RESUMO

People with cochlear hearing loss have substantial difficulty understanding speech in real-world listening environments (e.g., restaurants), even with amplification from a modern digital hearing aid. Unfortunately, a disconnect remains between human perceptual studies implicating diminished sensitivity to fast acoustic temporal fine structure (TFS) and animal studies showing minimal changes in neural coding of TFS or slower envelope (ENV) structure. Here, we used general system-identification (Wiener kernel) analyses of chinchilla auditory nerve fiber responses to Gaussian noise to reveal pronounced distortions in tonotopic coding of TFS and ENV following permanent, noise-induced hearing loss. In basal fibers with characteristic frequencies (CFs) >1.5 kHz, hearing loss introduced robust nontonotopic coding (i.e., at the wrong cochlear place) of low-frequency TFS, while ENV responses typically remained at CF. As a consequence, the highest dominant frequency of TFS coding in response to Gaussian noise was 2.4 kHz in noise-overexposed fibers compared with 4.5 kHz in control fibers. Coding of ENV also became nontonotopic in more pronounced cases of cochlear damage. In apical fibers, more classical hearing-loss effects were observed, i.e., broadened tuning without a significant shift in best frequency. Because these distortions and dissociations of TFS/ENV disrupt tonotopicity, a fundamental principle of auditory processing necessary for robust signal coding in background noise, these results have important implications for understanding communication difficulties faced by people with hearing loss. Further, hearing aids may benefit from distinct amplification strategies for apical and basal cochlear regions to address fundamentally different coding deficits. SIGNIFICANCE STATEMENT: Speech-perception problems associated with noise overexposure are pervasive in today's society, even with modern digital hearing aids. Unfortunately, the underlying physiological deficits in neural coding remain unclear. Here, we used innovative system-identification analyses of auditory nerve fiber responses to Gaussian noise to uncover pronounced distortions in coding of rapidly varying acoustic temporal fine structure and slower envelope cues following noise trauma. Because these distortions degrade and diminish the tonotopic representation of temporal acoustic features, a fundamental principle of auditory processing, the results represent a critical advancement in our understanding of the physiological bases of communication disorders. The detailed knowledge provided by this work will help guide the design of signal-processing strategies aimed at alleviating everyday communication problems for people with hearing loss.


Assuntos
Perda Auditiva Provocada por Ruído/fisiopatologia , Estimulação Acústica , Animais , Chinchila , Cóclea/lesões , Nervo Coclear , Perda Auditiva Neurossensorial , Masculino , Fibras Nervosas
2.
Biophys J ; 109(12): 2678-2688, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26682824

RESUMO

Models of the active cochlea build upon the underlying passive mechanics. Passive cochlear mechanics is based on physical and geometrical properties of the cochlea and the fluid-tissue interaction between the cochlear partition and the surrounding fluid. Although the fluid-tissue interaction between the basilar membrane and the fluid in scala tympani (ST) has been explored in both active and passive cochleae, there was no experimental data on the fluid-tissue interaction on the scala media (SM) side of the partition. To this aim, we measured sound-evoked intracochlear pressure in SM close to the partition using micropressure sensors. All the SM pressure data are from passive cochleae, likely because the SM cochleostomy led to loss of endocochlear potential. Thus, these experiments are studies of passive cochlear mechanics. SM pressure close to the tissue showed a pattern of peaks and notches, which could be explained as an interaction between fast and slow (i.e., traveling wave) pressure modes. In several animals SM and ST pressure were measured in the same cochlea. Similar to previous studies, ST-pressure was dominated by a slow, traveling wave mode at stimulus frequencies in the vicinity of the best frequency of the measurement location, and by a fast mode above best frequency. Antisymmetric pressure between SM and ST supported the classic single-partition cochlear models, or a dual-partition model with tight coupling between partitions. From the SM and ST pressure we calculated slow and fast modes, and from active ST pressure we extrapolated the passive findings to the active case. The passive slow mode estimated from SM and ST data was low-pass in nature, as predicted by cochlear models.


Assuntos
Ducto Coclear/fisiologia , Modelos Biológicos , Pressão , Animais , Fenômenos Biomecânicos , Cinética , Movimento , Dinâmica não Linear , Rampa do Tímpano/fisiologia
3.
Hear Res ; 314: 33-41, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24882641

RESUMO

A cochlear implant (CI) restores partial hearing to profoundly deaf individuals. CI electrodes are inserted manually in the cochlea and surgeons rely on tactile feedback from the implant to determine when to stop the insertion. This manual insertion method results in a large degree of variability in surgical outcomes and intra-cochlear trauma. Additionally, implants often span only the basal turn. In the present study we report on the development of a new method to assist CI electrode insertion. The design objectives are (1) an automated and standardized insertion technique across patients with (2) more apical insertion than is possible by the contemporary methods, while (3) minimizing insertion trauma. The method relies on a viscous fluid flow through the cochlea to carry the electrode array with it. A small cochleostomy (∼100-150 um in diameter) is made in scala vestibuli (SV) and the round window (RW) membrane is opened. A flow of diluted Sodium Hyaluronate (also known as Hyaluronic Acid, (HA)) is set up from the RW to the SV opening using a perfusion pump that sets up a unidirectional flow. Once the flow is established an implant is dropped into the ongoing flow. Here we present a proof-of-concept study where we used this technique to insert silicone implants all the way to the cochlear apex in rats and gerbils. In light-microscopic histology, the implantation occurred without cochlear trauma. To further assess the ototoxicity of the HA perfusion, we measured compound action potential (CAP) thresholds following the perfusion of HA, and found that the CAP thresholds were substantially elevated. Thus, at this point the method is promising, and requires further development to become clinically viable.


Assuntos
Cóclea/patologia , Implante Coclear/métodos , Implantes Cocleares , Eletrodos Implantados , Potenciais de Ação , Animais , Membrana Basilar/patologia , Eletrodos , Gerbillinae , Audição , Humanos , Ácido Hialurônico/química , Perfusão , Ratos , Janela da Cóclea/cirurgia , Osso Temporal/cirurgia
4.
J Assoc Res Otolaryngol ; 15(3): 465-82, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24658856

RESUMO

Recent psychophysical studies suggest that normal-hearing (NH) listeners can use acoustic temporal-fine-structure (TFS) cues for accurately discriminating shifts in the fundamental frequency (F0) of complex tones, or equal shifts in all component frequencies, even when the components are peripherally unresolved. The present study quantified both envelope (ENV) and TFS cues in single auditory-nerve (AN) fiber responses (henceforth referred to as neural ENV and TFS cues) from NH chinchillas in response to harmonic and inharmonic complex tones similar to those used in recent psychophysical studies. The lowest component in the tone complex (i.e., harmonic rank N) was systematically varied from 2 to 20 to produce various resolvability conditions in chinchillas (partially resolved to completely unresolved). Neural responses to different pairs of TEST (F0 or frequency shifted) and standard or reference (REF) stimuli were used to compute shuffled cross-correlograms, from which cross-correlation coefficients representing the degree of similarity between responses were derived separately for TFS and ENV. For a given F0 shift, the dissimilarity (TEST vs. REF) was greater for neural TFS than ENV. However, this difference was stimulus-based; the sensitivities of the neural TFS and ENV metrics were equivalent for equal absolute shifts of their relevant frequencies (center component and F0, respectively). For the F0-discrimination task, both ENV and TFS cues were available and could in principle be used for task performance. However, in contrast to human performance, neural TFS cues quantified with our cross-correlation coefficients were unaffected by phase randomization, suggesting that F0 discrimination for unresolved harmonics does not depend solely on TFS cues. For the frequency-shift (harmonic-versus-inharmonic) discrimination task, neural ENV cues were not available. Neural TFS cues were available and could in principle support performance in this task; however, in contrast to human-listeners' performance, these TFS cues showed no dependence on N. We conclude that while AN-fiber responses contain TFS-related cues, which can in principle be used to discriminate changes in F0 or equal shifts in component frequencies of peripherally unresolved harmonics, performance in these two psychophysical tasks appears to be limited by other factors (e.g., central processing noise).


Assuntos
Percepção Auditiva/fisiologia , Nervo Coclear/fisiologia , Sinais (Psicologia) , Discriminação da Altura Tonal/fisiologia , Estimulação Acústica , Animais , Limiar Auditivo , Chinchila , Cóclea/fisiologia , Masculino , Fibras Nervosas/fisiologia
5.
Front Syst Neurosci ; 8: 20, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24596545

RESUMO

While changes in cochlear frequency tuning are thought to play an important role in the perceptual difficulties of people with sensorineural hearing loss (SNHL), the possible role of temporal processing deficits remains less clear. Our knowledge of temporal envelope coding in the impaired cochlea is limited to two studies that examined auditory-nerve fiber responses to narrowband amplitude modulated stimuli. In the present study, we used Wiener-kernel analyses of auditory-nerve fiber responses to broadband Gaussian noise in anesthetized chinchillas to quantify changes in temporal envelope coding with noise-induced SNHL. Temporal modulation transfer functions (TMTFs) and temporal windows of sensitivity to acoustic stimulation were computed from 2nd-order Wiener kernels and analyzed to estimate the temporal precision, amplitude, and latency of envelope coding. Noise overexposure was associated with slower (less negative) TMTF roll-off with increasing modulation frequency and reduced temporal window duration. The results show that at equal stimulus sensation level, SNHL increases the temporal precision of envelope coding by 20-30%. Furthermore, SNHL increased the amplitude of envelope coding by 50% in fibers with CFs from 1-2 kHz and decreased mean response latency by 0.4 ms. While a previous study of envelope coding demonstrated a similar increase in response amplitude, the present study is the first to show enhanced temporal precision. This new finding may relate to the use of a more complex stimulus with broad frequency bandwidth and a dynamic temporal envelope. Exaggerated neural coding of fast envelope modulations may contribute to perceptual difficulties in people with SNHL by acting as a distraction from more relevant acoustic cues, especially in fluctuating background noise. Finally, the results underscore the value of studying sensory systems with more natural, real-world stimuli.

6.
Adv Exp Med Biol ; 787: 109-18, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23716215

RESUMO

Listeners with sensorineural hearing loss (SNHL) often show poorer thresholds for fundamental-frequency (F0) discrimination and poorer discrimination between harmonic and frequency-shifted (inharmonic) complex tones, than normal-hearing (NH) listeners-especially when these tones contain resolved or partially resolved components. It has been suggested that these perceptual deficits reflect reduced access to temporal-fine-structure (TFS) information and could be due to degraded phase locking in the auditory nerve (AN) with SNHL. In the present study, TFS and temporal-envelope (ENV) cues in single AN-fiber responses to band-pass-filtered harmonic and inharmonic complex tones were -measured in chinchillas with either normal-hearing or noise-induced SNHL. The stimuli were comparable to those used in recent psychophysical studies of F0 and harmonic/inharmonic discrimination. As in those studies, the rank of the center component was manipulated to produce -different resolvability conditions, different phase relationships (cosine and random phase) were tested, and background noise was present. Neural TFS and ENV cues were quantified using cross-correlation coefficients computed using shuffled cross correlograms between neural responses to REF (harmonic) and TEST (F0- or frequency-shifted) stimuli. In animals with SNHL, AN-fiber tuning curves showed elevated thresholds, broadened tuning, best-frequency shifts, and downward shifts in the dominant TFS response component; however, no significant degradation in the ability of AN fibers to encode TFS or ENV cues was found. Consistent with optimal-observer analyses, the results indicate that TFS and ENV cues depended only on the relevant frequency shift in Hz and thus were not degraded because phase locking remained intact. These results suggest that perceptual "TFS-processing" deficits do not simply reflect degraded phase locking at the level of the AN. To the extent that performance in F0- and harmonic/inharmonic discrimination tasks depend on TFS cues, it is likely through a more complicated (suboptimal) decoding mechanism, which may involve "spatiotemporal" (place-time) neural representations.


Assuntos
Limiar Auditivo/fisiologia , Nervo Coclear/fisiologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Perda Auditiva Neurossensorial/fisiopatologia , Discriminação da Altura Tonal/fisiologia , Estimulação Acústica/métodos , Animais , Chinchila , Limiar Diferencial/fisiologia , Humanos , Modelos Biológicos , Ruído , Psicoacústica
7.
Hear Res ; 286(1-2): 64-75, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22366500

RESUMO

The ability of auditory-nerve (AN) fibers to encode modulation frequencies, as characterized by temporal modulation transfer functions (TMTFs), generally shows a low-pass shape with a cut-off frequency that increases with fiber characteristic frequency (CF). Because AN-fiber bandwidth increases with CF, this result has been interpreted to suggest that peripheral filtering has a significant effect on limiting the encoding of higher modulation frequencies. Sensorineural hearing loss (SNHL), which is typically associated with broadened tuning, is thus predicted to increase the range of modulation frequencies encoded; however, perceptual studies have generally not supported this prediction. The present study sought to determine whether the range of modulation frequencies encoded by AN fibers is affected by SNHL, and whether the effects of SNHL on envelope coding are similar at all modulation frequencies within the TMTF passband. Modulation response gain for sinusoidally amplitude modulated (SAM) tones was measured as a function of modulation frequency, with the carrier frequency placed at fiber CF. TMTFs were compared between normal-hearing chinchillas and chinchillas with a noise-induced hearing loss for which AN fibers had significantly broadened tuning. Synchrony and phase responses for individual SAM tone components were quantified to explore a variety of factors that can influence modulation coding. Modulation gain was found to be higher than normal in noise-exposed fibers across the entire range of modulation frequencies encoded by AN fibers. The range of modulation frequencies encoded by noise-exposed AN fibers was not affected by SNHL, as quantified by TMTF 3- and 10-dB cut-off frequencies. These results suggest that physiological factors other than peripheral filtering may have a significant role in determining the range of modulation frequencies encoded in AN fibers. Furthermore, these neural data may help to explain the lack of a consistent association between perceptual measures of temporal resolution and degraded frequency selectivity.


Assuntos
Nervo Coclear/fisiopatologia , Perda Auditiva Neurossensorial/fisiopatologia , Neurofisiologia/métodos , Estimulação Acústica , Acústica , Animais , Percepção Auditiva/fisiologia , Limiar Auditivo/fisiologia , Calibragem , Chinchila , Cóclea/fisiologia , Neurônios/patologia , Fatores de Tempo
8.
Hear Res ; 280(1-2): 236-44, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21699970

RESUMO

Noninvasive auditory brainstem responses (ABRs) are commonly used to assess cochlear pathology in both clinical and research environments. In the current study, we evaluated the relationship between ABR characteristics and more direct measures of cochlear function. We recorded ABRs and auditory nerve (AN) single-unit responses in seven chinchillas with noise-induced hearing loss. ABRs were recorded for 1-8 kHz tone burst stimuli both before and several weeks after 4 h of exposure to a 115 dB SPL, 50 Hz band of noise with a center frequency of 2 kHz. Shifts in ABR characteristics (threshold, wave I amplitude, and wave I latency) following hearing loss were compared to AN-fiber tuning curve properties (threshold and frequency selectivity) in the same animals. As expected, noise exposure generally resulted in an increase in ABR threshold and decrease in wave I amplitude at equal SPL. Wave I amplitude at equal sensation level (SL), however, was similar before and after noise exposure. In addition, noise exposure resulted in decreases in ABR wave I latency at equal SL and, to a lesser extent, at equal SPL. The shifts in ABR characteristics were significantly related to AN-fiber tuning curve properties in the same animal at the same frequency. Larger shifts in ABR thresholds and ABR wave I amplitude at equal SPL were associated with greater AN threshold elevation. Larger reductions in ABR wave I latency at equal SL, on the other hand, were associated with greater loss of AN frequency selectivity. This result is consistent with linear systems theory, which predicts shorter time delays for broader peripheral frequency tuning. Taken together with other studies, our results affirm that ABR thresholds and wave I amplitude provide useful estimates of cochlear sensitivity. Furthermore, comparisons of ABR wave I latency to normative data at the same SL may prove useful for detecting and characterizing loss of cochlear frequency selectivity.


Assuntos
Estimulação Acústica , Limiar Auditivo/fisiologia , Nervo Coclear/fisiopatologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Animais , Chinchila , Cóclea/fisiopatologia , Perda Auditiva Provocada por Ruído/etiologia , Masculino , Modelos Animais , Ruído/efeitos adversos , Tempo de Reação/fisiologia
9.
Hear Res ; 269(1-2): 23-33, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20696230

RESUMO

Auditory-nerve fibers demonstrate dynamic response properties in that they adapt to rapid changes in sound level, both at the onset and offset of a sound. These dynamic response properties affect temporal coding of stimulus modulations that are perceptually relevant for many sounds such as speech and music. Temporal dynamics have been well characterized in auditory-nerve fibers from normal-hearing animals, but little is known about the effects of sensorineural hearing loss on these dynamics. This study examined the effects of noise-induced hearing loss on the temporal dynamics in auditory-nerve fiber responses from anesthetized chinchillas. Post-stimulus-time histograms were computed from responses to 50-ms tones presented at characteristic frequency and 30 dB above fiber threshold. Several response metrics related to temporal dynamics were computed from post-stimulus-time histograms and were compared between normal-hearing and noise-exposed animals. Results indicate that noise-exposed auditory-nerve fibers show significantly reduced response latency, increased onset response and percent adaptation, faster adaptation after onset, and slower recovery after offset. The decrease in response latency only occurred in noise-exposed fibers with significantly reduced frequency selectivity. These changes in temporal dynamics have important implications for temporal envelope coding in hearing-impaired ears, as well as for the design of dynamic compression algorithms for hearing aids.


Assuntos
Estimulação Acústica , Adaptação Fisiológica/fisiologia , Nervo Coclear/fisiopatologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Algoritmos , Animais , Chinchila , Masculino , Modelos Animais , Fibras Nervosas/fisiologia , Tempo de Reação/fisiologia , Fatores de Tempo
10.
J Assoc Res Otolaryngol ; 11(4): 657-73, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20556628

RESUMO

Recent perceptual studies suggest that listeners with sensorineural hearing loss (SNHL) have a reduced ability to use temporal fine-structure cues, whereas the effects of SNHL on temporal envelope cues are generally thought to be minimal. Several perceptual studies suggest that envelope coding may actually be enhanced following SNHL and that this effect may actually degrade listening in modulated maskers (e.g., competing talkers). The present study examined physiological effects of SNHL on envelope coding in auditory nerve (AN) fibers in relation to fine-structure coding. Responses were compared between anesthetized chinchillas with normal hearing and those with a mild-moderate noise-induced hearing loss. Temporal envelope coding of narrowband-modulated stimuli (sinusoidally amplitude-modulated tones and single-formant stimuli) was quantified with several neural metrics. The relative strength of envelope and fine-structure coding was compared using shuffled correlogram analyses. On average, the strength of envelope coding was enhanced in noise-exposed AN fibers. A high degree of enhanced envelope coding was observed in AN fibers with high thresholds and very steep rate-level functions, which were likely associated with severe outer and inner hair cell damage. Degradation in fine-structure coding was observed in that the transition between AN fibers coding primarily fine structure or envelope occurred at lower characteristic frequencies following SNHL. This relative fine-structure degradation occurred despite no degradation in the fundamental ability of AN fibers to encode fine structure and did not depend on reduced frequency selectivity. Overall, these data suggest the need to consider the relative effects of SNHL on envelope and fine-structure coding in evaluating perceptual deficits in temporal processing of complex stimuli.


Assuntos
Nervo Coclear/fisiologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Perda Auditiva Neurossensorial/fisiopatologia , Estimulação Acústica , Animais , Percepção Auditiva/fisiologia , Chinchila , Masculino , Modelos Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...